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Abstract
We have shown here how to find an integral representation for the solution of
the Euclidean equations of motion of a quantum mechanical point particle in
a general potential and in the presence of a four-Fermi term. The classical
action in this theory depends explicitly on a set of four fermionic collective
coordinates. The corrections to the classical action due to the presence of
fermions are of topological nature in the sense that they depend only on the
values of the fields at the boundary points τ → ±∞. As an application,
the quantum mechanical sine-Gordon model with a four-Fermi term is solved
explicitly and the corrections to the classical action are computed.

PACS numbers: 11.15.−q, 11.30.Pb, 03.65.Ge

1. Introduction

It is well known that the equations of motion for a point particle in Euclidean space moving
under the influence of a Minkowski potential possessing at least two degenerate minima, admit
finite action solutions which are the instantons. Their existence is responsible for tunnelling
processes in the Minkowski space. The symmetries of the action are reflected in the space of
instanton solutions. Local deformations of these solutions in the directions determined by the
symmetries give rise to zero modes in the semiclassical expansion. To avoid infinities in the
path integral due to these zero modes one is forced to introduce collective coordinates [1, 2].

In the presence of rigid supersymmetry the above solutions are still instantons provided
that the fermions vanish [3, 4]. Applying the rigid supersymmetry transformation rules on
these instantons one determines a more complete set of instantons where the fermions no
longer vanish but instead they depend linearly on Grassmann collective coordinates (GCC).
The number of GCC is equal to the number of Fermi fields present. Since the new instantons
are related to the previous ones by supersymmetry, the classical action remains the same.
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It is possible to break supersymmetry through the introduction of a four-Fermi term [5].
The new equations of motion can be solved iteratively starting with the instanton solution in the
supersymmetric case. The iterative process terminates due to the nature of GCC, therefore it is
possible to obtain exact solutions to the new equations of motion. Since there is no symmetry
involved in obtaining these solutions the instanton action will change. The correction is the
integral of a total derivative term, so it depends only on the boundary values of the fields. It
depends also on the GCC introduced by supersymmetry. Note that the fermionic fields become
infinite as τ → ±∞ while it is possible to keep the bosonic field finite by appropriate choice
of the integration constants. Nevertheless, despite this infinity, the action remains finite.

As an explicit example, we consider the quantum mechanical sine-Gordon potential with
a four-Fermi term. The iterative solution of the equations of motion is demonstrated explicitly
determining the instantons in this way. The integration constant that renders the bosonic field
finite is determined. In this case the instanton action becomes

S = −8m3

λ
+ εijklξiξj ξkξl

mg

12

where g, λ are coupling constants.
Finally, to obtain an integral expression for the solution of the equations of motion for a

general potential, in terms of the bosonic part of the instanton when the Fermi field is zero, we
make an appropriate change of variable to replace τ . It is interesting that in order to compute
the action corrections it is not necessary to solve the nonlinear BPS equation [2]. In fact it is
possible to express completely both the instanton and the finite boson integration constant in
terms of the new variable.

2. The quantum mechanical model

We start by considering the following one-dimensional quantum mechanical model in
Euclidean space:

Scl = −1

2

∫ ∞

−∞
[(ẋ(τ ))2 + U 2(x(τ ))] dτ. (1)

In writting this action we have performed Wick rotation to imaginary time. The potential
− 1

2U 2(x) of the equivalent particle is assumed to have a number of degenerate minima.
The equation of motion is

ẍ − U(x)U ′(x) = 0. (2)

The instanton solution of this equation satisfies the BPS equation [2]

ẋ in + U(xin) = 0 (3)

subject to the conditions xin(±∞) = C±, where U(C±) = 0. The action is invariant under
time translations which implies that if xin(τ ) is a solution to the BPS equation then xin(τ − τ0)

is also a solution. This means that

Z̃0(τ − τ0) = ẋ in(τ − τ0) = − d

dτ0
xin(τ − τ0) (4)

is a zero mode of the operator corresponding to the quadratic variation of the action around
xin. It satisfies the equation

˙̃Z0(τ − τ0) + U ′(xin)Z̃0(τ − τ0) = 0. (5)
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Note that the normalization of Z̃0 defined as ẋ in is just the absolute value of the classical
action. This is so because

Scl = −
∫ ∞

−∞
(ẋ in)

2 dτ = −
∫ ∞

−∞
Z̃2

0 dτ (6)

where we use the BPS equation. So, it is reasonable to define the normalized zero mode as
follows:

Z0 = |Scl|−1/2Z̃0. (7)

It is possible to introduce fermions into this model by adding the terms

S2f = −1

2

∫ ∞

−∞

[
ψT

i ψ̇ i +
(
ψT

i σ2ψi

)
U ′] dτ (8)

where σ2 = (0 −i
i 0

)
, ψi are two component Majorana fermions and the fermionic index is a

colour index ranging in i = 1, . . . , 4.
Each fermion is related to a boson through rigid N = 1 supersymmetry realized by the

transformations

δx = εT σ2ψ δψ = σ2ẋε − Uε. (9)

The spinor ε can be expanded in terms of the eigenstates ψ± = 1√
2

( 1
±i

)
of σ2 as follows:

ε = 1
2 (ξ+ψ+ + ξ−ψ−) (10)

and then it can be proved that if ε = ( 1+σ2
2

)
ε then,

δx = 0 δψ = ξ+ψ+Z0(τ ). (11)

Starting from the configuration x = xin, ψ = 0 and integrating over the above supersymmetry
transformations we arrive at the instanton given by x = xin and

ψ
(1)
i = ξiZ0(τ − τ0)ψ+. (12)

With each colour index we associate the same bosonic zero mode but different GCC ξi .
Following [5], we add to the action a four-Fermi term which breaks the supersymmetry

S4f = g

4

∫ ∞

−∞
εijkl

(
ψT

i σ1ψj

)(
ψT

k σ1ψl

)
dτ (13)

where σ1 = (0 1
1 0

)
. This term makes sense only when we have four fermion colours. The new

field equations are now

ẍ − UU ′ = 1
2

(
ψT

i σ2ψi

)
U ′′ (14)

ψ̇ i + σ2ψiU
′ = gεijklσ1ψj

(
ψT

k σ1ψl

)
. (15)

Expanding ψi w.r.t the GCC one has ψi = ψ
(1)
i + ψ

(3)
i . Note that all the other terms in the

expansion vanish. Making the ansatz

ψ
(3)
i = α(τ)εijklξj ξkξlψ− (16)

and plugging it into the fermionic field equation (15) one gets

α̇ − αU ′ = −gZ3
0 . (17)

Since the solution of the homogeneous equation is Z−1
0 it is natural to set

α(τ) = Z−1
0 y(τ). (18)
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This leads to the equation

ẏ(τ ) = −gZ4
0 . (19)

Similarly, we can expand x(τ) = xin(τ ) + x(4)(τ ) and plug this into the bosonic field equation
which gives

ẍ(4) − x(4)(UU ′′ + U ′2)(xin) = −εξ 4Z0α(τ)U ′′(xin). (20)

The solution of the homogeneous equation is Z0(τ ) so it is natural to set x(4) = εξ 4Z0(τ )β(τ)

where β(τ) satisfies

d

dτ

(
Z2

0 β̇
) = −y(τ)Z0(τ )U ′′(xin) (21)

and εξ 4 = εijklξiξj ξkξl .
It is interesting to compute the corrections to the classical action due to ψ

(3)
i and x(4). The

two-Fermi term gives

S2f = −1

2

∫ ∞

−∞

[
ψ

T (1)
i ψ̇

(3)
i + ψ

T (3)
i ψ̇

(1)
i +

(
ψ

T (1)
i σ2ψ

(3)
i + ψ

T (3)
i σ2ψ

(1)
i

)
U ′(xin)

]
= −1

2

∫ ∞

−∞

[
ψ

T (3)
i

(
ψ̇

(1)
i + σ2ψ

(1)
i U ′) + ψ

T (1)
i

(
ψ̇

(3)
i + σ2ψ

(3)
i U ′)]

= −1

2
(εξ 4)

∫ ∞

−∞
ẏ dτ = −1

2
(εξ 4)(y(∞) − y(−∞)) (22)

and the four-Fermi term

S4f = g

4

∫ ∞

−∞
εijkl

(
ψ

T (1)
i σ1ψ

(1)
j

)(
ψ

T (1)
k σ1ψ

(1)
l

) = 1

4
(εξ 4)(y(∞) − y(−∞)). (23)

One easily checks that S4f = − 1
2S2f .

The bosonic correction gives

Sbc = −
∫ ∞

−∞
[ẋ inẋ

(4) + x(4)U(xin)U
′(xin)]

= −
∫ ∞

−∞

d

dτ
(x(4)ẋ in) dτ = −εξ 4

√
Scl

(
lim

τ→∞
(
Z2

0(τ )β(τ)
) − lim

τ→−∞
(
Z2

0(τ )β(τ)
))

. (24)

It is worth noting that if the bosonic field is finite as τ = ±∞ then limτ→∞ (β(τ)Z0(τ )) is
finite and since limτ→∞ Z0(τ ) = 0 the bosonic correction vanishes.

3. The sine-Gordon model

For the sine-Gordon model the action is

SSG
cl = −1

2

∫ ∞

−∞

[
ẋ2 +

2m4

λ

(
1 − cos

(√
λ

m
x

))]
dτ. (25)

Here

U(x) = 2m2

√
λ

sin

(√
λ

2m
x

)
. (26)

The BPS equation takes the form

ẋ in +
2m2

√
λ

sin

√
λ

2m
xin = 0 (27)
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and can be easily solved to give

xin(τ ) = ±4
m√
λ

tan−1 e−m(τ−τ0). (28)

The minus sign corresponds to the instanton solution and the plus sign to the anti-instanton.
In what follows we are going to work with the instanton. The zero mode corresponding to the
instanton is

Z̃0(τ ) = dxin

dτ
= 2

m2

√
λ

1

cosh(m(τ − τ0))
(29)

and the classical action becomes

Scl = −
∫ ∞

−∞
Z̃2

0 dτ = −8m3

λ
. (30)

So

Z0 =
√

m

2

1

cosh(m(τ − τ0))
. (31)

Upon introducing the two- and four-Fermi terms given in the previous section, we get that the
fermionic field is ψi = ψ

(1)
i + ψ

(3)
i where ψ

(1)
i is given by (12) and ψ

(3)
i is given by (16). The

function y(τ) is the solution of the equation

ẏ(τ ) = −gZ4
0(τ ) = −g

m2

4

1

cosh4(m(τ − τ0))
. (32)

This can be solved by setting z = tanh(m(τ − τ0)). With this change of variable the solution
is written as

y(z) = −gm

4

(
a + z − 1

3
z3

)
(33)

and thus

ψ
(3)
i = −g

2

√
m

2

1√
1 − z2

(
a + z − 1

3
z3

)
εijklξj ξkξlψ−. (34)

To determine the form of x(4) we solve the bosonic field equation (21). In terms of the new
variable z this equation becomes

d

dz

(
dβ

dz
Z4

0(τ )

)
= 1

4

√
λ

2m
y(τ). (35)

This gives

dβ

dz
= −1

4

g

m

√
λ

2m

(
A

(1 − z2)2
+

αz

(1 − z2)2
+

z2

2(1 − z2)2
− z4

12(1 − z2)2

)
. (36)

The solution to this equation is

β(z) = 1

4

g

m

√
λ

2m

[(
A

2
+

5

24

)
z

z2 − 1
−

(
A

4
− 1

16

)
ln

(
z + 1

1 − z

)
+

1

12
z +

1

2

α

z2 − 1
+ B

]
.

(37)

The contribution to the two- and four-Fermi terms is

S2f + S4f = 1

2
S2f = εξ 4 gm

12
. (38)

The bosonic correction is

Sbc = −εξ 4 1

4
gm

(
A +

5

12

)
. (39)
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If the bosonic field is bounded at infinity then Sbc vanishes and this implies that A = − 5
12 . In

this case the full action is

Stot = −8m3

λ
+ εξ 4 gm

12
. (40)

4. Generalization

It is worth mentioning that it is possible to find an integral representation for the solution of
equations (19) and (21) if we change variables from τ to xin. This is so because ẋ in = √|Scl|Z0.
Applying this change of variable to (19) we get

dy

dxin
= − g√|Scl|

Z3
0 = g

|Scl|2 U 3(xin) (41)

where |Scl| = ∣∣ ∫ C+

C−
U(xin) dxin

∣∣. This admits the solution

y = gmα̃ +
g

|Scl|2
∫

U 3(xin) dxin. (42)

The integration constant α̃ has been chosen to be dimensionless. Similarly equation (21)
becomes

d

dxin

(
dβ

dxin
U 3(xin)

)
=

√
|Scl|y(xin)U

′′(xin). (43)

Integrating this equation once and using (41) we get
dβ

dxin
=

√
|Scl|y(xin)

U ′(xin)

U 3(xin)
− g

4
|Scl|− 3

2 U(xin) + gm2
√

|Scl|Ã 1

U 3(xin)
. (44)

Integrating again we get

β(xin) = −1

2
|Scl|− 3

2
1

U 2(xin)

(
gm|Scl|2α̃ + g

∫
U 3(xin) dxin

)
+

1

4
g|Scl|− 3

2

∫
U(xin) dxin

+ gm2|Scl| 1
2 Ã

∫
1

U 3(xin)
dxin + g|Scl|− 1

2 B̃. (45)

Recall now that as τ → ±∞, xin → C±, where U(C±) = 0. Demanding that the bosonic field
correction is finite we get that limxin→C± (β(xin)U(xin)) is finite, so limxin→C±(β(xin)U

2(xin)) =
0. This translates into the conditions

gm2|Scl| 1
2 Ã lim

xin→C+

(
U 2(xin)

∫ xin

x0

1

U 3(s)
ds

)
− g

2
|Scl|− 3

2

∫ C+

x0

U 3(s) ds = 1

2
α̃gm|Scl| 1

2 (46)

gm2|Scl| 1
2 Ã lim

xin→C−

(
U 2(xin)

∫ xin

x0

1

U 3(s)
ds

)
− g

2
|Scl|− 3

2

∫ C−

x0

U 3(s) ds = 1

2
α̃gm|Scl| 1

2 (47)

where the value of α̃ is determined by the choice of x0. Subtracting the two equations we
arrive at

Ã = 1

2m2
|Scl|−2

∫ C+

C−
U 3(s) ds

(limxin→C+ − limxin→C−)
(
U 2(xin)

∫ xin

x0

1
U 3(s)

ds
) . (48)

These formulae have been checked in the cases of the double-well and the sine-Gordon
potentials. For the double-well potential the results agree with those of [5] provided that
we redefine our integration constants appropriately. In the case of the sine-Gordon model
the results agree with those of the previous section under the following identification of the
integration constants:

Ã = 1

16
− A

4
α̃ = α

4
B̃ = B

2
. (49)
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5. Conclusion

We have determined the corrections to the supersymmetric instanton, for a quantum mechanical
point particle in a general potential that admits at least two degenerate minima, due to the
presence of a supersymmetry breaking four-Fermi term. Starting from the instanton solution
of the supersymmetric case and applying an iterative procedure we obtain the exact solution of
the new equations of motion. There is no symmetry involved in obtaining these solutions so
the classical action will receive corrections. If we demand that the bosonic field remains finite
as τ → ±∞ then only the two- and four-fermion terms contribute corrections to the classical
action. The fermionic fields diverge as τ → ±∞; nevertheless, their corrections to the action
remain finite. In the case of the sine-Gordon potential the classical action is modified by the
contribution εijklξiξj ξkξl

mg

12 where the ξi are fermionic collective coordinates. Finally, by a
suitable change of variables, we determine the corrections to the classical action for a general
potential and we compute the integration constant A that makes the bosonic field finite when
τ → ±∞ in terms of the potential only.
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